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Mota and Qaranyo, why are they not

plowed?

. I came from there to here without

seeing an ox.

-Line from Ethiopian poem

[1, 2], 1890s

After more than a decade of effort

by the Global Rinderpest Eradication

Programme (GREP) of the UN Food

and Agricultural Organization (FAO), the

Organisation mondiale de la santé

(Office international des épizooties

[OIE]), and the International Atomic

Energy Agency (IAEA), among others

[3–5], the veterinary disease rinderpest

(Figure 1) was declared eradicated on

25 May 2011 [6]. Since rinderpest virus

does not cause human disease, why is

this achievement important to humans?

Since at least the Roman era, rinder-

pest (German for ‘‘cattle plague’’) has

been indirectly responsible for countless

human deaths resulting from agricultural

losses that led to famine and disease. The

Ethiopian poem cited above refers to an

African rinderpest panzootic that caused

rapid loss of virtually all of the cattle,

buffaloes, elands, and wild swine, as well

as many sheep, goats, and wildlife species,

such as antelopes, gazelles, giraffes, harte-

beest, and wildebeest (the ‘‘Great Ethio-

pian Famine’’ of 1887–1892 [2, 7–11]).

Rinderpest virus (RPV) not only infects

cattle but also infects .40 other domestic

and wild artiodactyl species. It has been

credited with decimation of native African

wildlife species and even the decline of the

European bison.

The Ethiopian tragedy exemplifies the

importance of animal disease to hu-

mans. Without cattle to plow fields and

fertilize crops with dung, the once-fertile

Ethiopian lands became a graveyard.

Planting and harvesting ceased; vast de-

struction of the native fauna and eco-

system led to a surge of crop-destroying

rats and swarms of locusts and cater-

pillars likened at the time to a biblical

plague [2]. Desperate for food, people

first boiled and ate the skins of decom-

posed cattle, then abandoned their farms

and villages to forage, consuming leaves

and roots, picking through animal dung

for undigested seeds, and eating the

rotting corpses of horses, dogs, hyenas,

jackals, and vultures. Some turned to

cannibalism. Parents sold their children

into slavery in the hope that slave mas-

ters would save the childrens’ lives by

feeding them. Others committed suicide

and murder. Smallpox epidemics broke

out. Starving people fell and died in the

forests, along roadsides, and around

churches. Lions, leopards, and jackals

began to attack and kill people in broad

daylight. Throughout the night, villagers

heard the screams of starvation-weakened

neighbors being dragged off and eaten by

hyenas [2]. Speculative estimates of the

human death toll in affected parts of East

Africa reach as high as one-half to two-

thirds of the population [2]. Some his-

torians cite rinderpest as an ultimate

cause of the Matabele War [9]. The last

line of the poem (‘‘I came from there to

here without seeing an ox’’) has a double

meaning: ‘‘I came from there to here over

dead bodies’’ [1, 2].

RPV is a single-stranded, negative-

sense RNA virus of the family Para-

myxoviridae (subfamily Paramyxovirinae,

genus Morbillivirus) [12, 13]. The mor-

billiviruses are important pathogens of

humans and animals and include human

measles virus (MeV), peste-des-petits-ru-

minants virus, canine distemper virus,

phocine distemper virus [14], and the

cetacean morbilliviruses, including dol-

phin morbillivirus, porpoise morbillivirus,

and pilot whale morbillivirus [15–19].

Additional morbilliviruses likely infect

other animal species (eg, English hedge-

hogs [20]) and undoubtedly other species.

Although peste-des-petits-ruminants-virus

can also infect cattle and may be a tar-

get for future eradication efforts [21],

the associated disease is subclinical;
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transmission between small ruminants

and cattle is unlikely [22].

RPV transmission typically results

from close contact with an infected an-

imal via inhalation of virus-containing

nasal, oral, or fecal secretions. Classical

disease progression includes a silent in-

cubation period lasting 8–11 days, pro-

dromal fever, a mucosal phase beginning

4–5 days after fever onset, and a violent

diarrheal stage lasting 1–2 days, followed

by either dehydration and death or

gradual recovery. Mortality rates ap-

proaching 100% have been documented,

but milder forms of enzootic disease,

attributed to stable strains of reduced

virulence, sometimes cause mortality

rates as low as 5%–10% [9, 23, 24].

Rinderpest has had a profound in-

fluence on public health. The 19th cen-

tury devastation of Africa by rinderpest

was preceded by a century of recurring

European epizootics and panzootics that

led to an estimated 20% loss of dairy

cattle, undoubtedly retarding economic

development and increasing poverty,

malnutrition, and the infectious diseases

that follow [25, 26]. Rinderpest is alleged

to have been imported from Europe into

the United States in the 1860s but did

not become established [27, 28]. After

a massive epizootic in 1709 [29–31],

programs to control rinderpest consti-

tuted one of Europe’s major public

health efforts. Rinderpest was the first

infectious disease to be successfully

controlled by active intervention; the

techniques of restriction of animal

movement, formation of cordons sani-

taires, isolation, animal destruction, and

disinfection [32, 33] were later applied

to human diseases and became corner-

stones of public health practice [26].

Rinderpest led to one of the earliest

theories of infectious diseases [25, 26],

one of the first plans to vaccinate

(9 years before the 1720 European in-

troduction of smallpox inoculation [10,

22]), the first demonstration of pro-

tective maternal immunity [34, 35], and

one of the first uses of a thermometer to

document febrile illnesses [36]. Long

associated with war and natural dis-

asters, RPV was one of the first in-

fectious agents to be suspected as

a bioweapon [2]. The ravages of rin-

derpest led directly to the establishment

of the OIE in 1924.

Although it was initially unsuccessful,

the development of rinderpest vaccine was

among the earliest efforts of Robert Koch

(1843–1910) and Sir Arnold Theiler

(1867–1936). An attenuated goat-passaged

vaccine was eventually developed in

the 1920s. After decades of public health

efforts, Walter Plowright and colleagues

developed a vaccine capable of eradicating

RPV in the 1950s [37, 38]; it was modeled

after the vaccine then being developed to

prevent infection with the closely related

MeV. For his pioneering work, Plowright

was elected to the Royal Society in 1981

and was awarded the World Food Prize

in 1999. Sadly, Plowright died in 2010,

but he was aware that rinderpest eradica-

tion was imminent. Arnold Theiler’s son

Max (1899–1972) went on to develop the

yellow fever vaccine, the first successful

human live virus vaccine.

The eventual control of rinderpest with

prevention measures and vaccines was

not without consequences for African

ecosystems. The rebound in the wilde-

beest population led simultaneously to

marked decreases in the grasses and herbs

they feed on and increases in predator

species, such as lions [11]. After the

deaths of so many wild and domestic

artiodactyl hosts in parts of Africa, during

the great 1890s rinderpest panzootic, the

virus was paradoxically credited with

elimination of the testse fly (Glossinidae

species) and, consequently, the trypano-

somal parasite responsible for African

sleeping sickness [9]. These effects remind

us that both the devastation of and

Figure 1. Cattle dead of rinderpest in the years after the devastating African rinderpest panzootic, which began in 1887. This photograph was
probably taken around 1896 near Vryburg, Transvaal, South Africa (Veterinary History Society of Onderstepoort Veterinary Research Institute).
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the control/eradication of infectious

diseases in wildlife can have major, if

unappreciated, ecological effects.

The evolutionary relationship between

RPV and MeV is also noteworthy. Al-

though the goal of eradicating measles

remains unstated formally, aggressive

efforts by the World Health Organiza-

tion and many member nations have

greatly reduced global measles deaths

to the point where early steps toward

eradication are now being taken [39–41].

Rinderpest, the second disease after

smallpox to be eradicated, provides en-

couragement that measles can also soon

be eradicated; the two diseases share

such critical virologic and epidemiologic

features as a single viral immunotype,

few inapparent infections, lack of a

chronic carrier state, and vaccine induc-

tion of long-standing protective immu-

nity. That MeV has no extrahuman

reservoir contributes further to its erad-

icability [42].

Phylogenetic analysis reveals that RPV

is the closest relative of MeV, suggesting

that RPV, or something very like it, gave

rise to MeV [43]. Under this scenario,

an ancestral RPV-like virus jumped to

humans when humans started to do-

mesticate cattle for agricultural purposes

[9] and evolved into the infectious agent

that we now know as MeV. However,

because there is still a relatively large

genetic distance between RPV and cur-

rently circulating MeV strains [44], it

remains possible that an as-yet un-

sampled morbillivirus is the true ances-

tor of measles. However, despite the

close contact between humans and cat-

tle, and despite the past high prevalence

of RPV in some geographical regions,

there is no evidence that RPV symp-

tomatically infects humans. Modern

molecular biology has led to the dis-

covery of a multitude of new viruses,

including some new members of the

Paramyxovirinae [45–49], although none

are closer to MeV than RPV. If RPV

is the ancestor of MeV, eradicating the

ancestor of a human virus before eradi-

cating the human virus itself would

certainly be a unique and ironic step in

disease control.

It is quite likely that new morbillivi-

ruses will be found as we sample more

of the viral universe, some of which

could conceivable jump species barriers

to infect humans in the future [50].

In particular, the fact that modern-era

intensive farming and mass animal

transport have seemingly increased

the likelihood of emergence of human

diseases such as pandemic influenza,

Nipah virus disease, salmonellosis, and

bovine spongiform encephalopathy/

variable Creutzfeldt-Jakob disease,

should give us pause for thought. The

story of rinderpest and its possible role

in the genesis of measles should stim-

ulate more research into how RNA

viruses can jump species boundaries

to infect new hosts [50, 51]. The 2000-

year recorded history of rinderpest

suggests to us that greater efforts should

be placed on keeping the genie in

the bottle rather than trying to put it

back inside. Continued surveillance of

human and animal populations for

emerging morbilliviruses should clearly

be a public health priority.

As rinderpest becomes the second

eradicated infectious disease, saving

not only countless animal and human

lives but also the considerable expense

of continuous control efforts, it is

worth noting that, in addition to measles

[39–41], two other human diseases are

also close to eradication: polio [52, 53]

and dracunculiasis [54]. In both cases,

however, setbacks and delays have

caused many to lose faith. The genera-

tion that eradicated smallpox is now

handing off the baton of progress to

a new generation, one that has come

of age grappling with newly-emerging

and re-emerging diseases, such as AIDS,

severe acute respiratory syndrome, and

pandemic influenza, but possessing

powerful new research tools. The tri-

umph of rinderpest eradication should

challenge the current scientific gen-

eration to view disease eradication as

the ultimate means of control and

prevention, to pursue eradication when

the tools become available, and to seek

to develop those tools when they are not

available.
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